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Exploring Online Learning Data Using Fractal Dimensions

Hongwen Guo

Educational Testing Service, Princeton, NJ

Data collected from online learning and tutoring systems for individual students showed strong autocorrelation or dependence because
of content connection, knowledge-based dependency, or persistence of learning behavior. When the response data show little depen-
dence or negative autocorrelations for individual students, it is suspected that students are randomly guessing the answers or that they
are inconsistent in learning behavior. In addition, the global and local rates of correct responses may reflect students’ proficiency in the
learning process. This study shows that the dependence of online data may be characterized by the fractal dimension as a summary
statistic locally and globally. The rate of correct responses and the global and local fractal dimensions of individual students’ responses
may indicate their learning behavior in short and long learning windows. The results may shed light on when individual students are
experiencing difficulties in the learning process.
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With advances in technologies, more and more schools and teachers have been using online teaching, learning, tutoring,
and homework systems to assist student learning. For example, there were 841,687 registrations for online courses for
HarvardX and MITx (Ho et al,, 2014) from fall 2012 to summer 2013, and millions of K- 12 students use online learning
and homework systems. The online platforms track students” every click as they use instructional resources, complete
assessments, and engage in social interactions. These data have the potential to help researchers identify, at a finer reso-
lution than ever before, what contributes to students’ learning and what hampers their success. Big data collected online
may provide additional value in understanding student learning strategies and helping teachers in instruction, which is
particularly useful for K-12 education.

As Fayyad, Piatetsky-Shapiro, and Smyth (1996) have pointed out, one basic problem is mapping raw data (which are
typically too voluminous to understand and digest easily) into other forms that might be more compact, more abstract, or
more useful (e.g., a summary index, a predictive model). Commonly used summary statistics such as means and standard
deviations may not be meaningful enough to describe the online learning processes. In this study, time-series techniques
(including more suitable summary statistics, such as the dependence index) were sought to model students’ response
processes instead of final scores.

Unlike responses to educational assessment and tests, where students have limited time to respond to limited test
questions/items (where most likely the number of items is in the double digits), online learning and homework solving
usually do not have a time limit (instead it may last for one school year, for example), and it is not unusual to collect
thousands of responses and clicks to homework questions for an online course during a school year for an individual
student. In addition, students’ proficiency levels may change in the process, and knowledge and skills change too. Therefore
the traditional item response models based on item response theory (IRT) with and without response time (Lord & Novick,
1968; van der Linden, 2007) to model educational assessment may not be suitable for big online data. Data collected from
online learning and tutoring systems for an individual student are expected to show strong and positive correlation or
dependence because of content connection, knowledge-based dependency, or persistence of learning behavior. Because
of violation of the local independence, this adds to another reason for not using IRT models for online data.

When the response data show little dependence or negative correlations for a student, it is suspected that students
may be randomly guessing answers or that they may be inconsistent in learning behavior —a sign of problematic learn-
ing. Treating the responses as time-series sequences, Warnakulasooriya and Galen (2012) found that students’ responses
exhibit random walk- or Brownian motion-like characteristics. A random walk-like response exhibits irregularities or
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fluctuations about the expectations. Such a characteristic may be quantified by stochastic processes with or without depen-
dence structures, such as fractional Brownian motions (fBms) and their fractal dimensions.

The fractal dimension of a fBm is the statistical index that characterizes the scaling property of self-similarity as well as
covariance functions of the process (see Appendix A for details). A fractal analysis is used to evaluate and calculate auto-
correlation and dependency between observations using various techniques (as shown in the Data and Fractal Analysis
section) for long time-series sequences. It is particularly useful to simplify a dependency structure by using a few indices
instead of many parameters.

The purpose of this study is to extract useful information from the voluminous data using stochastic processes. In this
study, the long item response sequences from an individual student’s learning process are treated as a time-series sequence.
Because of the expected dependence among responses, this study attempts to characterize the learning process by a fractal
dimension besides the rate of correct responses. I present statistical modeling of the time-series sequences by stochastic
self-similar processes (Mandelbrot, 1983), such as the fBm. In this study, the fractal dimension of the stochastic process
is used as a summary index to describe the overall dependency of the long time-series sequences and to characterize
the persistence of a student’s learning behavior. In addition, the confidence band of the estimated fractal dimension is
provided to account for uncertainty.

More specifically, the study focuses on the following questions:

1 Is dependence observed between item responses?

2 Can the expected dependence structure be characterized by an overall fractal dimension index? If not, will the local

fractal dimensions provide more information?

The rate of correct responses reflects a student’s proficiency. Is it changing in the learning process?

4  Can analytical results on item response sequences alone provide useful information to detect whether a student is
experiencing difficulty in the learning process?

w

The goal of such an analysis is to see whether combination of the fractal dimension estimation and the rate of correct
responses could capture the moments when educators need to implement early intervention to improve teaching and
learning before they obtain individual students’ final exam or test scores.

This study is inspired by but different from Warnakulasooriya and Galen (2012) in the following ways: (a) The
autocorrelation function (ACF) and other statistical tools are employed to explore whether a fractal dimension
is plausible in the data sequences; (b) in addition to investigating the fractal dimension globally and locally, the
global and local average rates of correct responses play an important role in interpretation; and (c) it is empha-
sized that the fractal dimension alone is not enough to classify a student. Instead, researchers need to pay
attention to changes in fractal dimensions and average rates of being correct. More important, theoretical prop-
erties of fractal dimensions and calculation of these dimensions are described in Appendix A to clarify possible
misunderstanding.

The remainder of the report is organized as follows. In the next section, stochastic self-similar processes and the
fractal dimension are introduced. In Data and Fractal Analysis section, the data set collected from an online tutoring
system is described. Analysis results are presented on item response accuracy. The fractal dimension is used to char-
acterize the dependence in the response sequences, and the mean score (the rate of correct responses) sequences are
examined to reflect students’ learning curves. In the Discussion section, a summary and discussion are provided. Cal-
culation of fractal dimensions is presented in Appendix A, and an exemplary scenario in the tutoring system is given in
Appendix B.

Self-Similar Processes and Fractal Dimensions

Many complex geographical objects, such as earth terrain, weather, and DNA, are statistically self-similar, meaning that
each small portion of the object can be considered a reduced-scale image of the whole. The degree of complication can be
described by a quantity D, the fractal dimension, that has many properties of a dimension. The well-known self-similar
processes are Brownian motion, fBms, Levy flights, and so on. Their fractal dimensions can be calculated mathematically.
These processes are often used in modeling mathematical sequences, DNA sequences, financial data, traffic signals, texts,
and so forth.
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Fractional Brownian Motion
A real-valued stochastic process Z = {Z(t), t € R} is self-similar with index H > 0 if, for any a > 0,

{Z(at)y = {a"Z (1)},

where = denotes the equality of the finite-dimensional distributions. This H is called the Hurst index of the process
(Taqqu, 2003).
The process Z = {Z(t)},c g has stationary increments if, for all # €R,

{(Z@t+h) - Z(W)} =" {Z (1) - Z(0)}.

A Gaussian self-similar with stationary increment (sssi) process {By;(f)},cr with 0 < H <1 is called a fBm. Its covari-

ance function is 2
Cov (Z(s), Z(®) = = (It + |1 = |t = s}, (1)

where 62 = Var{Z(1)}. When ¢? = 1, it can be shown that, for some constant C, as t — 0,
E(Z(t+h) - Z(h)* ~ C|t|*". ()

It is shown mathematically that with probability 1, the Hausdorff dimension and box dimension (for definitions, see
Appendix A) of the graph {t, By ()}, <; <, are of the same value D, and D=2 — H (Taqqu, 2003). When H = 1/2, it is the
regular Brownian motion.

The Hurst index and the fractal dimension, as well as the covariance structure in Equations 1 and 2, reflect the local
topological structure of the process. Furthermore, fBm also has a global property that is characterized by H. Let {Z(¢)} be
an H-sssi process, and let

X=Zk+1)—-Z(k), kel

The autocovariance function of the increment sequence {X,} is

2
y (k) = EX.X,\; = %(|k+1|2H—2|k|2H+|k—1|2H). (3)

1

If H#1/2, then
y (k) ~ 6*H 2H — 1) [k|*7~2, (4)

as k — oo.
In particular, for k #0,
y(k)y=0, if H=1/2

y(k)y<o0, if 0<H<1/2

y(k)y>0, if 1/2<H<I

From the preceding equations one can show that, for 1/2<H <1, the autocovariance tends to zero so slowly
that 37y (k) diverges. In this case, one says that {X;} exhibits long-range dependence (or has long memory). For
0 < H < 1/2, the autocovariance tends to zero quickly,and ;7 (k) = 0.In this case, it is said to exhibit antipersistence.

Computation of the Fractal Dimensions

A large number of methods have been developed for estimating fractal dimensions, such as box-count (Hall & Wood,
1993), variogram (Constantine & Hall, 1994; Kent & Wood, 1997), level-crossing (Feuerverger, Hall, & Wood, 1994),
and spectral (Chan, Hall, & Poskitt, 1995) estimators. Essentially all methods follow a common scheme: (a) A certain
numerical property Q of the data is computed as a function of scale €; (b) an asymptotic power law Q(e) €Y is derived or
postulated as the scale € — 0, where the scaling exponent b is a linear function of the fractal dimension D; and (c) applying
linear regression of logQ(e) on loge returns an estimate of D.
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Gneiting, Sevcikova, and Percival (2012) studied these estimation methods (see Appendix A for definitions) exten-
sively in finite sample simulations. Considering both efficiency and robustness, the authors recommend the madogram
estimator, a statistically more efficient version of the Hall - Wood estimator. Therefore, in the following analysis, only the
madogram estimator of the fractal dimension is used.

Data and Fractal Analysis

In this study, a data set was obtained from the KDD Cup competition.! This data set is the Algebra I 2006 -2007 training
data that take the form of records of interactions between students and computer-aided tutoring systems. Students solve
problems in the tutor, and each interaction between the student and computer is logged as a transaction. When using
a computer tutor, a student completes a problem by steps. The whole collection of steps for one problem composes the
solution, and the last step can be considered the answer. Students may not perform all steps for a problem. Students
might complete a step by performing the correct steps, requesting a hint from the tutor, entering an incorrect value,
or a combination of these. Each hint request, incorrect attempt, or correct attempt is a transaction, and each recorded
transaction is referred to as an attempt for a step. The complete data record includes these attempts for a step, transaction
time, step duration, correct first attempt (1 if correct, 0 otherwise), and so on.

In the data set studied here, there are 1,840 students and 2,270,384 steps in total. Hence, on average, each student took
1,234 steps throughout the online tutoring course.

The correct or incorrect first-attempt responses by students were tracked for each item or step before they requested
hints. If a student requested a hint before providing any responses to a step, his or her response to the step was treated as
incorrect. Let t denote the number of steps, X(f) =1 if the first attempt is correct, and X(t) = — 1 if incorrect. Let Z(t) be
the net score at time ¢, the accumulation of first attempts. That is,

t
Z(t) = ZX(:‘).
i=1

When the X(t) are independent and identically distributed, Z(t) is a simple random walk. The graph of {(, Z(t))} is
so irregular that its fractal dimension (both Hausdorff and box-counting dimensions) is 1.5 (Falconer, 1990, Theorem
16.4). When the X(¢) are strongly positively correlated or persistent (i.e., 1/2 < H < 1), the fractal dimension of the graph
is 2 — H, a value smaller than 1.5. In this case, the graph is smoother. However, when the X(¢) are negatively correlated
(antipersistent, 1 < H < 1/2), the graph of {(t, Z(t)} is very irregular so that it may have a fractal dimension approaching
2.

During students’ learning processes, their step responses to online tutoring problems are expected to be autocorrelated
because of knowledge- and content-based dependence. For instance, a good grasp of concepts in the previous sections may
help in understanding concepts in the following sections. To determine how strong the autocorrelations are, and whether
an autoregression moving average (ARMA) model or a self-similar process can be used to model the data, the dependence
structure of these step response sequences is briefly investigated. For this purpose, plots of the sample autocorrelations
against the lag and the variance of X, against 7 on the log-log scale are considered (Beran, 1994).

Two students, Student 7 and Student 9, were picked from the pool for illustrative purposes. Based on the preliminary
results of kernel regression, Figure 1 shows that Student 7’s first attempts can be roughly assumed to be stationary, whereas
Student 9’s first attempts are stationary after the first 250 or so steps. Figure 2 shows the variance of X,, against 7 on the
log-log scale of two students’ net scores (for Student 9, variance estimation starts from the 251th step). The slopes (0.52
and 0.66) are less than 1, which indicate strong correlations in the observations (Beran, 1994). The ACF plots and the
logarithm of absolute value of ACF against logarithm of lag are presented in Figure 3. The ACF plots on the first row show
slow decay of autocorrelations for the two response sequences, and the logarithm of ACF against the logarithm of lag again
shows the slow decay with a slope of —0.43 and —0.63 (a value between —1 and 0). Again, these ACF plots on the log-
log scale indicate strong correlations in observations (Beran, 1994). Because of the evidence of strong correlation (long-
range dependence), using an ARMA model with an excessive number of parameters is undesirable, especially because
it increases the uncertainty of the statistical inference and hinders interpretation of the parameters. Therefore fractional
dimensions were chosen to characterize dependency in the net score processes.

Figure 4 shows cumulative sums of correct (1) and incorrect (—1) scores in the sequences. For easy comparison, only
the first 1,000 steps of the data were used. Notice that the scales are very different across the plots.
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Figure 1 Score sequences of first attempts for Students 7 and 9. The curves in the middle are the kernel smoothing regression lines for

response accuracy against number of steps. The x axis stands for the number of first attempts, and the y axis is the corresponding value
(1 =correct response; 0 otherwise) of the first attempt.

To calculate the fractal dimension, the summands of the net score sequence were centered by removing the average
observed score (a fixed number of each student) from the observed score to obtain a detrended sequence that had sta-
tionary increments. That is, a nonrandom linear trend was removed from the observed net scores. Theoretically, the net
score sequences and detrended sequences have the same fractal dimension. In practice, they are not the same (but are
somewhat close). By centering the responses, we are more focused on the dependence structure. The fractal dimensions
of the detrended sequences are 1.37 for both Students 7 and 9.

In Figure 4, the trajectories of Student 7’s and Student 9’s cumulative responses have similar fractal dimensions around
1.37, but the trajectories are very different: Student 7’s trajectory is consistently increasing, whereas Student 9’s has
dramatic changes. To analyze the behaviors in detail, Figure 5 shows the local fractal dimensions of the two net score
sequences. The local fractal dimensions are calculated for every 100 observations (i.e., window width is 100) sliding
through the whole sequence with a step width of 40.

In the upper panels of Figure 5, the solid line is a trajectory of the cumulative sum of responses (the net score
path), the dashed line is the local fractal dimension, and a horizontal line of 1.5 is plotted at the center as a criterion
line. The dash-dotted line is the overall (global) fractal dimension of the trajectory, and the two dotted lines are the
estimated confidence band for the fractal dimension, estimated from the bootstrapping method (Davies & Hall, 1999).
As discussed in Hall and Wood (1993), the fractal estimator approximates a normal distribution in the limit when
1.25< D <2. The confidence band allows estimation error to be considered when evaluating the fractal dimension
and persistency in students’ responses. In the upper left panel of Figure 5, the fractal dimension fluctuates around
1.37, which may indicate a long-range dependence. That is, overall, the responses are positively correlated. When
the fractal dimension is 1.5, it is the regular random walk. That is, the responses are independent of each other. For
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Figure 2 The log-log plot of variance of mean net scores of first attempts for Students 7 and 9. The x axis stands for log logn, and the y
axis is the variance of )_(n, where 7 is the number of first attempts.

Student 9, as is shown in the upper right panel of Figure 5, the local fractal dimension reaches 1.2 around the 150th
step or so, indicating a strong long-range dependence. However, it reaches 1.8 around the 300th step, which may
indicate inconsistent performance. That is, from the 250th to 300th steps, the autocorrelation is negative. In some
sense, the student’s responses may be irregular during this period of learning, and a warning sign may be issued
for early intervention. After 300 steps, the fractal dimension fluctuates around 1.4, indicating a persistent pattern in
responses.

Fractal dimensions characterize dependency in the score processes, which is not necessarily linked to proficiency.
However, to evaluate students’ proficiency, knowledge, or skill in learning, the average/mean correct rate of responses
may be a meaningful statistic to monitor. In the lower panels of Figure 5, the local mean net scores (i.e., the average net
score of every 100 observations sliding through the whole sequence with a step width of 40) are plotted for the two net score
sequences. In the plot, the solid line is the net score path, the dashed line is the local mean net score, and the dash-dotted
line is the overall/global mean net score. The lower left panel shows that, for Student 7, the mean scores fluctuate about
zero around the 100th to 200th steps and then rise to 0.5, showing a relatively good performance afterward. Combining
with the upper left panel, the plots show that, overall, Student 7 persistently performed at a high proficiency level (with
fractal dimensions less than 1.5 and mean net scores larger than zero). Conversely, the lower right panel in Figure 5 shows
that Student 9 started with a high correct rate but dramatically dropped to the zero line (average net score of zero) around
the 300th step. This change coincides with the high local fractal dimension in the upper right panel. Afterward, the local
mean fluctuates around the zero line. Combining with the local fractal dimension, it shows that Student 9 had persistent
performance but at a low proficiency level after the first 300 steps. A confidence band can be easily added to the mean
score plots to account for uncertainty.
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Figure 3 (top) Autocorrelation function and (bottom) logarithm of the autocorrelation function of the response accuracy sequences
for Students 7 and 9. In the lower panels, the logarithm of the autocorrelation function (y axis) against the logarithm of lag (x axis)
again shows the slow decay with a slope of —0.46 and —0.77 (dashed lines). The solid line is a line of slope —1.

Overall, both students showed persistence in their learning behavior with some instability at the first 200 or
300 steps, but one student had higher proficiency than the other. Figures like Figure 5, with the response trajec-
tory, local mean, and local fractal dimension, may provide valuable information with regard to student learning
behavior.

Discussion

As pointed out by Winne and Baker (2013), in educational data mining, instruments should be developed to gather data
that trace over time to inform how students are learning. With the popularity of online learning/tutoring and the abun-
dance of online processing data, there is a need to understand basic structures of online learning data.

In this study, data collected from an online tutoring system for individual students were explored. Strong depen-
dence was observed in some of the students’ first-attempt responses to questions. It was shown that the dependence
of online data might be characterized by fractal dimensions as a summary statistic locally and globally. For stu-
dents’ net score path, a fractal dimension close to 1 indicates a strong positive correlation among their responses
and therefore a persistent behavior in the learning process; a fractal dimension close to 1.5 indicates no correla-
tion among responses and that their behavior may be subjected to random guessing; and a fractal dimension close
to 2 indicates irregular and antipersistent behavior in responses, which may be a warning sign that the student
is struggling in the learning process. In short, the fractal dimension may reflect persistence in students’ response
behavior.
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Figure 4 Net score paths for the two students. The x axis stands for the number of first attempts, and the y axis is the cumulative sum
score.

It may be useful for researchers and instructors to monitor the global and local mean scores, the global and
local fractal dimensions, and their confidence bands of an individual students responses. The combined informa-
tion, particularly sudden changes, may reflect changes in an individual students learning behavior in short and
long learning windows, and it may indicate whether the student is struggling and needs extra help in the learning
process.

However, the results obtained from fractal analysis are experimental and inconclusive. Many questions are unanswered,
for example, how to set a threshold to flag the local fractal dimension, that is, when it is high enough to warrant a warn-
ing or flagging. This issue may be addressed with external variables, such as assessment scores. Choice of window size
in calculating local fractal dimensions and local mean scores should depend on numbers of steps and questions in each
knowledge content. Another caution is that the time-series techniques (including estimation of the fractal dimensions)
are best suited to long and stationary sequences. Short sequences will unavoidably cause problems in estimation accuracy,
particularly when trends are presented. Further studies also need to consider whether a multidimensional stochastic pro-
cess can model response accuracy and response time simultaneously so that more useful information can be extracted
from the online data. In addition, the fractal analysis of online data presented here mainly addresses persistence in stu-
dents’ response behavior. To reflect students’ overall proficiency, global and local mean score analysis may be helpful, and
the confidence band is likely to be wider if a strong dependence is observed. However, for researchers who are interested
in students’ particular skills and content knowledge, more educational, psychological, and statistical models need to be
employed.
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Figure 5 Local dimensions (first row) and local mean net scores (second row) of Students 7 and 9 (window size = 100, step size = 40).
A low dimension close to 1 and less than 1.5 indicates long-range dependence; 1.5, random walk; and 2, antipersistency. Local mean
net scores close to zero indicate an equal chance of correct and incorrect answers.
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Appendix A
Computing the Fractal Dimension

The mathematical definition of fractal dimension is based on the measure theory (counting measure, Lebesgue measure
as an extension of length, probability as measure, etc.). Hausdorff dimension dimy; is based on the Hausdorff measure;
packing dimension dim is based on the packing measure (Falconer, 1985, 1990).

The Hausdorff dimension is an extension of the traditional dimension, as the Hausdorff measure is an extension of
the traditional Lebesgue measure, which in turn is an extension of length. Many methods exist to compute the fractal
dimension; each method has its own theoretic basis. This fact often leads to obtaining different dimensions by different
methods for the same set.

Let FC R? be a set. For £ >0, an e-cover of F is a finite or countable collection {B;:i=1,2,- -} of balls B; C R¥ of
diameter || B;|| less than or equal to € that covers F. Let

oo
S T o . .o R ~
H? (F) = lim inf ; |B|I” = {B; : i=12,---} isane-cover of F (A1)

denote the §-dimensional Hausdorff measure of F. Because of monotonicity of the Hausdorft measure with respect to 6,
there exists a unique nonnegative value D such that H°(F) = c0 if § < D and H?(F) =0 if 6 > D. This value D is called the
Hausdorft dimension dimy; = D of the point set F.

The box-counting dimension is widely used and easily computed (but not based on the measure theory). Let F be any
nonempty bounded subset of R", and let N;(F) be the smallest number of sets of diameter at most 6 that can cover F. The
lower and upper box-counting dimensions of F, respectively, are defined as

logN; (F
dim F = limé_)oogl—éfs)
dimy B =B o~ og
—  —  logN;(F
dim,F = liméqo(’gl—‘sg).

If the above two limits are equal, the common value is the box-counting dimension of F.

Note that dimy F < dim F < dimyF and dimy; F < dimgF. For many regular fractals, the dimensions are the same.

Of course, there are mathematic and probabilistic techniques to compute the fractal dimension. The simplest example
is the Cantor set (Falconer, 1985, p. 58). Let m > 2 be an integer and 0 < A < 1/m. Let F be the set obtained by the con-
struction in which each basic interval I is replaced by m equally spaced subintervals of length 4|I|, the ends of I coinciding

with the ends of the extreme subintervals. Then dimy F = dimg F = Eﬁ; For example, the Cantor set in Figure Al is

log2/log3.
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Figure Al The Cantor set.

In this section, the estimators of fractal dimension in the R package fractaldim are reviewed. In their paper, Gneiting
et al. (2012) restricted their attention to the point set

Z={(t.2) eRxR : te T c R} c R™,

which is the graph of time series or spatial data observed at a finite set T C R¢. Without loss of generality, T is assumed to
be the unit interval or unit cube. For a smooth and differentiable curve (d = 1) or surface (d = 2), its fractal dimension, D,
equals the topological dimension d. For a rough and nondifferentiable curve or surface, the fractal dimension may exceed
the topological dimension. For example, for a Gaussian process {Z,, t € R%} with stationary increments, if the covariance
structure (variogram)

rn®= %E (Zy = Zys)” (A2)

satisfies
@ =|let|* +o (It*), as t—o, (A3)

where @ € (0,2], § > 0, and ¢, > 0, then the graph of a sample path has a fractal dimension of
D=d+1- g (A4)

almost surely (Gneiting et al., 2012). Comparing Equation 1 to Equation A4, one can see that « =2H.
Table A1 lists the most popular estimators of the fractal dimension.

Box-Counting Estimator

As mentioned earlier, the box-counting estimator is the simplest and most popular method. In this R package, the basic
idea is simple: First, the time series graph is initially covered by a single box; second, the box is divided into four quadrants,
and the number of cells required to cover the curve is counted; third, each subsequent quadrant is divided into four
subquadrants; and fourth, one continues doing so until the box width equals the resolution of the data, keeping track
of the number of quadrants required to cover the graph at each step. The box-counting estimator equals the slope in an
ordinary least squares regression of logN(g) on loge, where € is the width of the box and N(¢) is the number of boxes
covering the curve.

In the R package, the smallest scales k for which N(g;) > n/5 (where £, =25~ K for k=0,1,- - -, K, and n is the sample
size), as well as the two largest scales, are excluded from the regression fit.

Hall-Wood Estimator

The next three estimators (Hall- Wood, variogram, and variation) use the local property in Equation 4 of the time series
in the time domain.

Table A1 Some Methods for Estimating the Fractal Dimension

Method Property Scale Scaling law Regime
Box count N(&): number of boxes e: box width N(e) xe P e—>0
Variogram 7,(f): variogram t:lag 7, (f) ox 172D t—0
Madogram ¥, (f): madogram t:lag 7, () xt27P t—0
Spectral f(w): spectral density w: frequency f(®) x?P=5 0—0
Wavelet v2(7): wavelet variance 7: scale V(1) o t2P -0
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Let A(e) denote the total area of the boxes at scale ¢ that intersect with the data graph. There are N(¢) such boxes, and
s0 A(e) = €2N(¢). Therefore
logA (g)

dimy =2 — lim loge

(A5)

Atscaleg;=I/nforl=1,2,- - -, n,an estimator of A(l/n) is

] (/]
" D1 = Zigayal.
i

The Hall- Wood estimator only uses two points at the smallest scales:

Ad/n) =

B oo logA (2/n) — logA(l/n)‘

hw —

A
log2 (46)

Variogram Estimator
The variogram method is easy to implement. In view of Equations A2 and A3, the classical method of moments estimator
is used for y(¢) at lag t = I/n, defined as

n

-~ 1
Vy(l/n) = mz (Zifu - Z(i—l)/n)2 . (A7)
i=1

The variogram estimator is the slope of the regression fit of logV (¢) on logt. As in the Hall-Wood estimator, to avoid
bias, the implemented variogram estimator is

logv2 2/n)— log/\;'2 (1/m)

EN 1
Dy,=2--
Vi 2 log2

(A8)

Variation Estimator

It is a generalized variogram estimator so that the estimator is more robust compared to the moments estimators of
variogram. Define the variogram of order p of a stochastic process with stationary increments,

=312~ Zull (49
When p =1, it is called madogram. It is shown that, for some constant pr
v, () = e t|P* + O (|t “PP2) | as 1t —o.
The implemented variation estimator is

. . llong (2/n)—long (1/n)
Ve T p log2

(A10)

for appropriately defined \A/p.
It is observed in literature that p =1 (the madogram estimator) is optimal most of the time in simulations.

Spectral and Wavelet Estimators

Both spectral (Whittle estimator) and wavelet estimators use the global property of Equation 4 of the time series, but in
the frequency domain. For a stationary Gaussian process {X, : t € [0, 1]}, define the semiperiodogram

1
J (@) = B(w)’, B(w) = 2/ X,cos (w[2t — 1]) dt.
0
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Suppose there are n=2m + 1 observations at time t =i/(2m) € [0, 1]. The semiperiodogram estimator is

-1

L L
N 5 1 - oA _
DP = E + E ;(Sl - Slog(] (Cl)l) 2 (Sl - 5)2 5 (All)

I=1

where @, =2zl,s;=logw, and L is recommended to be min{m/2, n*>3}.

Considering both efficiency and robustness, Gneiting et al. (2012) recommended the use of the madogram estimator,
which can be interpreted as a statistically more efficient version of the Hall- Wood estimator.

Appendix B
An Example Question in the Studied Data

The data take the form of records of interactions between students and computer-aided tutoring systems. The students
solve problems in the tutor. Figure B1 is an exemplary scenario of the online questions.

In the example, a student is asked to find the area of a piece of scrap metal left over after removing a circular area (the
end of a can) from a metal square (Figure B1). The student enters everything in the worksheet, except for the row labels
and the column and unit labels for the first three columns. There are three questions. A problem is a task for a student to
perform that typically involves multiple steps. A step is an observable part of the solution to a problem. For example, for
the first question, there are five steps in the interface:

1. Find the radius of the end of the can (a circle).
Find the length of the square ABCD.
Find the area of the end of the can.
Find the area of the square ABCD.
Find the area of the leftover scrap.

A

This whole collection of steps composes the solution. The last step can be considered the answer, and the others are
intermediate steps.

) Scenario = [Bi%]
File Edit Tutor Windows Help

Worksheet
File Edit Tuter Worksheel Windows Help

5l

Zer D c
pEEE radius of the length of the Area of the AREAOF AREA OF END
.g 5 endofthe can  square ABCD  scrapmetal BQUARE ABCD OF CAN
= .,
. SQUARE SQUARE
e
g E o Unit inches inches square inches INCHES INCHES
O E Diagrambabel | AB i} :
= A B Q Question 1 4 8 1376 64 5024
End ol Can sare -
o Metal Sq o Question 2 8 16 5504 256 20096
g Question 3 45218

To make metal cans, the ends for the cans are stamped oul of square pieces of
metal. The par of the square thal is left over is then recytled as scrap. The
manufacturer needs to know the area of the scrap for each end. Then the total
weight of the scrap can be figured out - S ———————————

1. The can end has a radius of 4 inches. If an end is punched out of a square
plece of metal measuring & Inches on a side, ind the square inches of the File Edit Windows
scrap. | A areas

2. The can end has a radius of 8 inches. If an end is punched out of a square
piece of metal measuring 16 inches on a side, find the square inches ofthe
scrap.

3.The can end has a radius of 12 inches. If an end is punched out of a square
piece ofmetal measuring 24 inches per side, find the square inches ofthe
scrap.

NOTE: To find the area of the scrap metal remaining, you might have to first find
Ihe area of the can end, and the area of the metal square

For this problem use an approximale value for pi. 7= 314

Proslam Maling Cans 1 Aren / & Comperite / Making Cans.

Figure B1 A problem from Carnegie Learning’s Cognitive Tutor Geometry.
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Note that students might not (and often do not) complete a problem by performing only the correct steps. Instead, the
student might request a hint from the tutor or enter an incorrect value.

There are many variables in the data set, such as problem, step, knowledge component, and opportunity. As a prelim-
inary analysis, this report only focused on one variable: correct first attempt, the tutor’s evaluation of the student’s first
attempt on the step—it is 1 if correct, 0 if an error.
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